۱۴۰۳ پنج شنبه ۱ آذر
خدمات الکتروریسی

امروزه نانوالیاف به عنوان يکی از مهمترين محصولات فناوری‌های نانو در بسياری از حوزه‌ها به‌ويژه در پوشش‌های زخم، مهندسی بافت، حوزه‌های دارويی، صنايع نساجی، صنايع رنگ و پوشش، صنايع شيميايی فناوری اطلاعات و ارتباطات، توليد و ذخيره‌سازی انرژی، بهينه‌سازی مصرف انرژی پيل‌های خورشيدی، محيط زيست، انواع حسگرهای زيستی و شيميايی، حوزه‌های مرتبط با زيست فناوری کشاورزی و ... کاربردهای زيادی پيدا کرده‌اند.


هر چند روش‌های تولید نانوالیاف در یک دسته‌بندی کلی قابل تفکیک به چند روش کلی است، اما تنوع در خود این تکنیک‌ها هم بالا است. بدون شک مناسب‌ترین و قابل کنترل‌ترین روش در بین روش‌ها الکتروریسی است که بیشترین تنوع تکنیک را نیز دارد. الكتروریسي ‌روشی‌نوین ‌و‌کارآمد ‌برای‌ تولید‌ آسان ‌الیافی ‌است‌ که‌ دامنه‌ قطری ‌آنها ‌در‌ مقیاس ‌نانوست. ‌این ‌روش ‌از ‌رایج‌ترین ‌روش‌های ‌تولید ‌نانو‌الیاف‌ به ‌شکل‌های‌ مختلف ‌مانند ‌نانوالیاف ‌هسته‌ پوسته،‌ توخالی ‌و ‌متخلخل‌ است. الکتروریسی به جهت مزایایی که بر سایر روش‌ها دارد به عنوان یکی از بهترین روش‌های تولید نانوالیاف به شمار می‌رود که کاربردهای فراوانی پیدا کرده است.

تعریف نانو الیاف

به طورکلی الياف از نظر ابعاد به سه دسته الياف معمولی، ميکرونی و نانوالياف طبقه‌بندی می‌شوند. الياف با قطر کمتر از يک صد نانومتر را نانوالياف می‌نامند.

نانوالياف باتوجه به مواد سازنده‌شان به چند دسته تقسيم می‌شوند:

۱- نانوالياف پليمری

۲- نانوالياف کربنی

۳- نانوالياف معدنی

۴- نانوالياف کامپوزيتی

ازنظر شکل و مورفولوژی نانوالیاف به صورت‌های زیر یافت می‌شوند:

۱- نانو الياف بافته شده

۲- نانوالیاف آرایش یافته

۳- نانو الياف هسته-پوسته

۴- نانو الياف توخالی

۵- نانو الياف نواری شکل

۶- نانو الياف متخلخل

۳- روش‌های تولید نانوالیاف

نانوالیاف به روش‌های متنوعی نظیر کشش، تولید از قالب، خودآرایی، جدایش فازی و الکتروریسی تولید می‌شوند .

فرایند الکتروریسی

در این روش، ابتدا محلول پلیمری تهیه شده، در داخل مخزن (سرنگ) قرار مي گيرد بطوری که انتهای سوزن سرنگ محل خروج مایع پلیمری خواهد بود. سپس بين سوزن و صفحة هدف (صفحه جمع کننده)، اختلاف پتانسيل بسيار بالايي اعمال می گردد. این ولتاژ بالای الکتريکي سبب جريان يافتن سيال پليمر از داخل سوزن به سمت صفحة هدف مي شود. براي اينکه سيال بتواند جريان پيدا کند، نيروي الکتريکي بايد بر نيروي کشش سطحي پليمر و همچنین گرانروی آن که مانع از جريان يافتن مایع مي شوند، غلبه کند. دستگاه الکتروریسی جهت تولید نانوفیبرهای پلیمری به منظور شبیه سازی ECM سلولی استفاده می گردد.

برخی از کاربردهای مهم نانوالیاف حاصل از فرایندهای الکتروریسی در زمینه پزشکی به موارد زیر اشاره می گردد:

مهندسی بافت

پوشش‌های زخم

سامانه‌های کنترل‌شده رهایش دارو

فیلترهای پزشکی

تجهیزات و ایمپلنت‌های پزشکی

ماسک‌های بهداشتی

اَبرجاذب‌ها

عوامل موثر بر مورفولوژی نانوالیاف الکتروریسی شده

مورفولوژی نانوالياف مانند قطر و يکنواختی الياف پليمری الکتروريسی شده به پارامترهای زيادی بستگی دارد. برخی از این پارامترها مثل غلظت محلول، وزن مولکولی (ویسکوزیته)، به ویژگی‌های محلول مربوط می‌شود. برخی دیگر مثل ولتاژ اعمالی، نرخ تغذيه، نوع جمع‌کننده و فاصله بين نوک سوزن و جمع‌کننده مربوط به دستگاه الکتروریسی است و پارامترهای دیگری چون رطوبت و دما به عوامل محیطی مربوط می‌شوند. در ادامه به بررسی اثر این پارامترها خواهیم پرداخت.

غلظت محلول

غلظت محلول پليمری نقش موثری در تشکيل فيبر در فرايند الکتروريسی دارد. در يک غلظت مناسب نانوالياف صاف و مستقيم تشکيل می‌شوند. در صورتی که غلظت بسيار زياد باشد، به جای نانوالياف، ميکروربان‌های مارپيچ ايجاد خواهند شد.

وزن مولکولی محلول

وزن مولکولی نشان‌دهنده طول زنجیر پلیمر است و بر گرانروی محلول اثر می‌گذارد. در گرانروی‌های پایین، الیاف قرارگرفته روی صفحه جمع‌کننده، دارای ذرات گلوله مانند هستند. در این حالت میزان درهم رفتگی زنجیر‌های پلیمری کمتر است. کشش سطحی تأثیر زیادی بر جت الکتروریسی دارد. مولکول‌های حلال به دلیل کشش سطحی تمایل بیشتری به تجمع و تبدیل شدن به شکل کروی را دارند.

در گرانروی‌های بالا، میزان درهم‌رفتگی زنجیرهای پلیمری در محلول بیشتر است. در واقع برهم کنش میان مولکول‌های پلیمر و حلال بیشتر است. بنابراین زمانی که محلول تحت تأثیر بارهای الکتریکی کشیده می‌شود مولکول‌های حلال تمایل به گسترش یافتن در میان مولکول‌های درهم‌رفته پلیمری را دارند، در نتیجه گرایش مولکول‌های حلال، به گرد هم آمدن در اثر کشش سطحی کاهش خواهد یافت و الیاف با قطر یکنواختی تشکیل می‌شوند. همان‌طور که در شکل۷ دیده می‌شود با افزایش گرانروی از شکل a تا h، تغییر جزئی در شکل گلوله‌ها به وجود می‌آید و از شکل کروی به شبه‌مخروطی تبدیل شده در نهایت به شکل لیف هموار در می‌آیند.

ولتاژ اعمالی

ولتاژ بالا، بارهای الکتریکی لازم را وارد محلول می‌کند. این بارها میدان الکتریکی خارجی را ایجاد می‌کنند. در این حالت محلول آویزان از نوک سوزن در هنگام شروع فوران، به شکل مخروط تیلور تبدیل می‌شود. در اکثر موارد ولتاژ بالاتر موجب کشش بیشتر محلول می‌شود و به دنبال آن میدان قویتری را ایجاد می‌کند. که این موارد در کاهش قطر الیاف موثر است و به تبخیر سریعتر حلال و خشک شدن الیاف کمک می‌کند درصورتی که در ولتاژ کم پلیمر گلوله گلوله می‌شود. شکل۸ اثر ولتاژ روی نحوه خروج پلیمر از سوزن نشان داده شده است.

نرخ تغذیه

آهنگ تغذیه محلول ریسندگی نیز یکی از پارامترهای تاثیرگذار بر تشکیل نانوالیاف و قطر آن‌ها می‌باشد. به گونه‌ای که اگر آهنگ تغذیه پایین باشد، محلول پلیمری خارج‌شونده از سوزن یکنواخت و پیوسته نبوده و جت پایدار محلول و مخروط تیلور تشکیل نخواهدشد. درنتیجه، الیافی با قطرهای متغیر شکل خواهدگرفت. در برخی موارد نیز بید و الیافی نواری شکل ایجاد خواهندشد. در شکل۹ تصویرSEM از نانوالیاف الکتروریسی شده در نرخ تغذیه متفاوت ارائه شده است، همانطور که در شکل۹ مشاهده می‌گردد، با افزایش نرخ تغذیه بید روی نانوالیاف تشکیل شده است. این عیوب به دلیل عدم تبخیر حلال و کشش پایین محلول در فضای میان سوزن و صفحه جمع‌کننده ایجادشده‌اند.

نوع جمع‌کننده

جمع‌کننده‌ها به دو شکل متحرک و ثابت هستند. جمع‌کننده‌ي مدور برای جمع‌آوری الیاف بصورت منظم است و به خشک شدن الیاف کمک بیشتری می‌کند و این به عنوان مزیت شمرده می‌شود. مثلا DMF نقطه جوش بالایی دارد و وقتی الیاف جمع‌آوری می‌شوند باعث ایجاد رطوبت در آنها می‌شود. جمع‌کننده دوار، زمان بیشتری برای تبخیر حلال ایجاد می‌کند و میزان تبخیر را افزایش می‌دهد. این جمع‌کننده، زمانی که به الیاف مجزا نیاز باشد باعث بهبود ریخت شناسی الیاف می‌شود.

فاصله نوک سوزن و جمع‌کننده

فاصله بین سوزن تا جمع‌کننده بر زمان پرواز و شدت میدان تأثیر مستقیم دارد. در شکل۱۰ تاثیر فاصله بین سوزن و جمع‌کننده روی مورفولوژی نانوالیاف نشان داده شده است. با کاهش فاصله، شدت میدان افزایش پیدا می‌کند و موجب افزایش شتاب در حرکت جت می‌شود. در این شرایط ممکن است زمانی که جت به جمع‌کننده می‌رسد زمان کافی برای تبخیر حلال نبوده، حلال اضافی موجود در الیاف سبب ادغام الیاف در یکدیگر شود.

کاهش فاصله، به طور همزمان افزایش ولتاژ و افزایش شدت میدان را در پی دارد. اگر شدت میدان بسیار زیاد باشد، افزایش ناپایداری جت را به دنبال دارد که به تشکیل گلوله‌ها کمک می‌کند. اگر فاصله به‌گونه‌ای باشد که شدت میدان در حالت بهینه قرار گیرد، گلوله‌های کمتری تشکيل می‌شود. زیرا میدان الکترواستاتیکی، نیروی کششی مناسبی را به جت وارد خواهد کرد. افزایش فاصله، زمان بیشتری را برای پرواز ایجاد می‌کند که باعث می‌شود محلول قبل از تشکیل روی جمع‌کننده، بیشتر کشیده شود و این منجر به کاهش قطر متوسط الیاف می‌شود.

رطوبت

شرایط محیط مانند میزان رطوبت ممکن است بر فرایند الکتروریسی اثرگذار باشد و با افزایش رطوبت، خلل و فرج بیشتر می‌شود.

دما

دمای محلول علاوه بر افزایش نرخ تبخیر بر کاهش گرانروی محلول پلیمری نیز اثرگذار است. در صورتی که پلیمر در دمای بالا الکتروریسی شود، الیاف با قطر یکنواخت‌تری تولید می‌شوند. این پدیده ممکن است ناشی از گرانروی کمتر محلول و حلالیت بیشتر پلیمر در حلال باشد که اجازه کشش بیشتری به محلول می‌دهد. با گرانروی کمتر یا سیالیت بیشتر مولکول‌های پلیمر ناشی از افزایش دما، قادرند نیروی کششی بیشتری به محلول وارد کنند، بنابراین الیاف حاصل دارای قطر کوچک‌تری هستند. در شکل۱۱ تاثیر دما روی قطرنانوالیاف را نشان می‌دهد. قطر نانوالیاف ریسیده شده در ۳۰ درجه سانتی‌گراد ۹۸ نانومتر و در ۶۰ درجه سانتی‌گراد قطر نانوالیاف ۹۰ نانومتر است.

تاریخ به روزرسانی:
1401/12/20
تعداد بازدید:
131
دانشگاه اصفهان
آدرس: اصفهان - خیابان هزار جریب - دانشگاه اصفهان - گروه پژوهشی فناوری پلیمر
تلفن: 37934904-031 و 37932700
تلفکس: 36689732
پست الکترونیک: polymer@ui.ac.ir
 

Powered by DorsaPortal